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Higgs Mechanism without Higgs Particle 
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Until now there has been no empirical evidence for the existence of the Higgs 
particle, although the Higgs mechanism of symmetry breaking is very successful. 
We propose a scalar-tensor theory of gravity with the Higgs field of the 
SU(3) x SU(2) x U(1) standard model of the elementary particles as scalar field, 
which results finally in Einstein's gravity and in the SU(3)xSU(2)xU(1)  
standard model without any influence of the excited Higgs field. 

1. I N T R O D U C T I O N  

There  exists an old idea of Einstein (1913), the so-called "Mach  
principle of relativity of  inertia," according to which mass  should be 
produced  by the interact ion with the gravi ta t ional  field. Einstein argued 
that  the inertial mass  is only a measure  for the resistance of a particle 
against  the relative acceleration with respect to other  particles; therefore, 
within a consequent  theory of relativity the mass  of a particle should not  
be given absolutely, but should originate f rom the interact ion with all o ther  
particles of the universe, whereby this interact ion should be the gravi ta t ional  
one which couples to all particles, i.e., to their masses or energies. He 
postula ted  even that  the value of the mass  of a particle should go to zero 
if one puts the particle at an infinite distance f rom all others. 

This fascinating idea was not  very successful in Einstein's theory of 
gravity,  i.e., general relativity, but  it led Brans and Dicke (1961) to develop 
their sca la r - tensor  theory of gravity with the intention that  the active as 
well as passive gravi ta t ional  mass,  i.e., the gravi ta t ional  "constant ,"  be a 
scalar function determined by the distr ibution of the particles in the 
universe. 

1Physics Department, University of Konstanz, Box 5560, D-78434 Konstanz, Germany. 
2The usual partial derivative with respect to the coordinate x ~ is denoted by Jp. 
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On the other hand, the inertial mass is generated in modern elemen- 
tary particle physics by the interaction with ~he scalar Higgs field and we 
emphasize that the successful Higgs-field mechanism also lies exactly in the 
direction of Einstein's idea of producing mass by a gravitation-like inter- 
action. One can show (Dehnen et al., 1990; Dehnen and Frommert, 1991) 
that the Higgs field as source of the inertial mass of the elementary 
particles mediates a scalar gravitational interaction, however, of Yukawa 
type, between those particles, which become massive in consequence of the 
spontaneous symmetry breaking: The masses are the source of the scalar 
Higgs field and the Higgs field acts back by its gradient on the masses i n  
the momentum law. 

Because of the identity of gravitational and inertial mass (equivalence 
principle), it seems meaningful, if not even necessary, to identify both 
approaches. For this reason we recently proposed a new scalar-tensor 
theory of gravity (Dehnen et al., 1992) where the isospin-valued Higgs field 
of elementary particle physics plays simultaneously the role of a variable 
gravitational constant instead of the scalar field introduced by Brans and 
Dicke. The associated Lagrangian which unifies gravity and the other 
known interactions with a minimum of effort takes the very simple form 
(h=l, c=l)  

( 1 r 1 LM} (1.1) ~( '=  {-f-~r r q--~ r162 V(r q- (__g)l/2 

with the Higgs potential 

2 2 3 #4 
v(o) = z 0+r + #. + (1.2) 

the ground-state value of which is normalized to zero, otherwise a 
cosmological constant would appear; but the Higgs potential will produce 
a cosmological function. R is the Ricci scalar and cr a dimensionless factor 
which must be determined empirically. The symbol I[# means the covariant 
derivative with respect to all external and internal gauge groups. 2 The 
general form of the Lagrangian (1.1), however, without specifying LM and 
the covariant derivative, was proposed already by Zee (1979). 

In contrast to our previous paper (Dehnen et al., 1992), where ~b is 
considered to be an arbitrary U(N) isovector not contained in the matter 
Lagrange density L M [i.e., ~b does not produce the fermionic masses like, 
for example, the SU(5) GUT Higgs field], we restrict ourselves here to the 
minimal standard model of the internal gauge group SU(3)x  SU(2)x U(1) 
with the SU(2)x U(1) Higgs field qt generating all the fermionic and the 
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W e and Z ~ masses. In this case the matter Lagrangian reads explicitly 
(L, R mean summation of left-, right-handed terms) 

i -  1 
La4 = ~ ~?~, R ~'ll, + h.c. -- ~ F ~ F #  ~ - k~Rr + h.c. (1.3) 

Herein @ summarizes the leptonic and hadronic Dirac wave-functions, F,,,a 
are the gauge-field strengths, and 2 represents the Yukawa coupling matrix 
for the fermionic masses. With exception of /,2, the Lagrangian (1.1) 
together with (1.2) and (1.3) does not contain any dimensional parameter 
(Z and k are dimensionless real-valued constants). 

The essential result of such a theory turns out to be that after spon- 
taneous symmetry breaking the excited Higgs field possesses no sources. 
As a consequence the Higgs field cannot be excited by other elementary 
particles, so that no Higgs particles can be generated in high-energy 
experiments. 

2. FIELD EQUATIONS 

The field equations following from the action principle associated with 
(1.1) are generalized Einstein equations 

1 8zt 
R,v - ~ Rg,~ + - ~  V((b) g,~ 

-- o~t~ ~#t~ _#ill/~#llv) 2rPlar 6u~] 

I 
~b*~b [(~b*~b)l'll~ - (~b*~b)r;lla g'~] (2.1) 

the Higgs field equation 

the Dirac equations 

iy~( ~) ~/ ll~ - k ( fctq~t~ R) = 0 (2.3) 

and the inhomogeneous Yang-Mills equations for the gauge field strengths 

v~, = 4~tja ~ (2.4) Fa Uv 
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with the gauge currents 

�9 ~ _  "~ "~ _ - ~, l g  t ~  ,~11~ Ja--Ja(O)-l-Ja(O)--gOTL, RTa@-b-~J~a7, +h.c. (2.4a) 

belonging to the fermions and the Higgs field, respectively. In (2.4a) z a are 
the generators of the internal unitary gauge group in question and g means 
the corresponding gauge coupling constants. 

The energy-momentum tensor T,~ in (2.1) is the symmetric metrical 
one belonging to (1.3) and reads, with the use of the Dirac equation (2.3), 

i - (,, I1~) 1 ( 1 pa 1S'aflctlzv ~ (2.5) 

In consequence of the coupling with the Higgs field the energy-momentum 
law is modified in comparison with the pure Einstein theory; one has 

T~hl~ = k~ R(J~ll, 2O L + h.c. + Fv~j;(O ) (2.5a) 

Finally we note that the purely gravitational part of the theory is related 
to a generalization of Brans and Dicke's theory proposed by Bergmann 
(1968) and Wagoner (1970). 

3. SPONTANEOUS SYMMETRY BREAKING 

From the field equation (2.2) it follows for the nontrivial Higgs-field 
ground state (#2 < 0) 

6/~ 2 
Oo = vN, N ' N =  1, N =  const, v 2 = ~bt0~b 0 - )~ (3.1) 

for which the Higgs potential (1.2) is minimized simultaneously; its 
ground-state value is zero and herewith the field equations (2.1) for the 
metric are fulfilled identically with the Minkowski metric as the metrical 
ground state. Insertion of (3.1) into the Dirac equation (2.3) and into the 
Higgs-field gauge current (2.4a) of the Yang-Mills equation (2.4) yields the 
fermionic mass matrix 

th = lkv(N*2 + 2*N) (3.2) 

and the matrix of the mass square of the gauge bosons: 

M 2 b  = 4~zg2v2N*z ~a Z b)N (3.3) 
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The diagonalization procedure of (3.3) is not given here explicitly but 
results in the usual Weinberg mixing with the bosonic masses Mw= 
7"g 1/2g 2 V, m z  = 2 2 1/2 v[rc(gl +g2) ]  , and m A = 0 (the gluons remain massless of 
course). 

In the unitary gauge the Higgs field ~b takes the form, avoiding 
Goldstone bosons, 

0 = pN, p2 = ~b,~b (3.4) 

Referring p to the ground state, we set 

p = v(1 + q~) (3.4a) 

where the real-valued scalar field q) describes the excited Higgs field 
connected with the Higgs particle [see equation (3.8)]. Insertion of (3.4) 
and (3.4a) into (2.1) gives the field equation of gravitation: 

1 127c #4 [(1 + q))2-- 1] 2 

O(V 2 .~ (1 + ~o) 2 

- -  ~ / ) 2 ( 1 _ ~ ( p ) 2  ~v'Jc--~(1-l-q))2ma 2 A ~ A , - s  A~A "guy) 

+ v  2 (~ol~q)jv- ~ 

1 )2 - ( 1  +q~)21;ll~g.v ] (3.5) 
(1 + ~o) 2 I-(1 + q, ~,~ 

with the trace 

R =  8~ {T 1 ,2 �9 .2 - a -  b;. 
~V2( 1 + ~0)2 --~-~ (1 + ~0) lVJ.eA~a 

/,4 } 
- v2~ot.~cp I'~ + 6 ~ [ ( 1  + (0) 2 - 1 ]2  

3 
(1 + ~o) 2 (1 + -'q,)2~H;. (3.5a) 

and the equation of motion [see (2.5a)] 

(1 + ~~ 2 
T~q- 4 ~  

=q~l~I~rhO l+(P4_Tr M,bA;~ A 2  , b;~] (3.5b) 
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(A,a are the gauge potentials). According to (3.5b), the Higgs field ~0 
generates a gravitation-like potential force acting on the massive particles 
(Dehnen e t  al., 1990; Dehnen and Frommert, 1991). 

Obviously the Newtonian gravitational constant is defined only after 
symmetry breaking (Adler, 1982) and is given by [see (3.5)] 

G = 1 / ev  2 (3.6) 

whereas its variability is described by (1 + q~) 2. Simultaneously equation 
(3.6) determines the value of the parameter ~ because v 2 is known from the 
masses (3.3) [see also (3.9)]. The cosmological function originated by the 
Higgs potential is necessarily positive and possesses the value 

~4 ['(1 "]-q))2__ 112 
A = 12rcG )~ (1 + q))2 (3.7) 

It vanishes for the ground state (q) = 0). The first bracket on the right-hand 
side of (3.5) represents the effective energy-momentum tensor of fermions 
and gauge bosons taking additionally into account the masses of the gauge 
bosons and energy and momentum of the excited Higgs field. 

In the same way it follows from (2.2) after insertion of (3.5a) and (3.6) 
that 

[(1+ qg) 2 -  1]l~ll ~+M2[(1 +q~)2- 1 ] -  1 8~G 
1 + 47t/3e 3 

with the square of the Higgs mass 

M 2 - 16rcG(#4/2) 
(1 + 4rc/3c~) 

- -  I t -  (1 + ~0) ~rh0]  

(3.8) 

(3.8a) 

The comparison of (3.3) and (3.6) gives the value of ~; one finds 
immediately 

~_ ( M m / M w )  2 ~ 1033 (3.9) 

where M e l  = 1/x/-G is the Planck mass. Accordingly, the value of (3.8a) is 
smaller than the usual one by the small factor e 1 and of the same order 
of magnitude as A; see (3.7). In consequence of the nonminimal coupling 
of gravitational and Higgs fields in (1.1) and (2.2), the trace T appears as 
an additional source in (3.8), which results later in a total cancellation of 
the right-hand side. 
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Finally we give the Dirac equation (2.3) and the Yang Mills equations 
(2.4) after symmetry breaking. One obtains with (3.2) 

and with (3.3) 

#~L)0),,-- (1 + q>) rhO(LR ) = 0 (3.10) 

v, ~o) 2 M ~ b A  ~'b = (3.11) Fa irv + (1 + 4uj2($) 

Now we are able to calculate the source of the excited Higgs field (o 
according to (3.8). From (2.5) and (3.10) we get for the trace of T ~'~ 

i -  
T= ~ 0Y~..eOii, + h.c. = (1 + <p) tprh o (3.12) 

Evidently by insertion of (3.12) into (3.18) the source of the excited Higgs 
field ~o vanishes identically; it obeys exactly the homogeneous (nonlinear) 
wave equation: 

(1 + q~/2) ~ ~0i~o~_0 
~~ + M2~~ 1+~o 1+~0 (3.13) 

or in view of (3.8) the homogeneous Klein-Gordon equation for the 
variable (1 + ~0) 2 - 1. 

We note here explicitly that not only the fermionie masses, but also 
those of the gauge bosons no longer appear in (3.13) as source for the 
excited Higgs field; it is coupled only to the very weak gravitational field 
contained in the only space-time covariant derivative. In the case of several 
Higgs fields the cancellation discussed above takes place only in the field 
equation for that particular Higgs field generating the gravitational constant 
and is true only for those masses produced by that particular Higgs field. 

4. CONCLUSIONS 

Obviously, in consequence of equation (3.13) it is practically impossible 
to generate the Higgs field q~ or the associated particle of mass M in the 
laboratory; in view of the space-time covariant derivative this would be 
possible only in the extremely weak gravitational channel. Otherwise the ~0 
field can exist as a cosmological background field and perhaps solve the dark 
matter problem. In any case the solution q~ ~ 0 is always possible. Herewith 
we obtain from (3.5) and (3.5b) the usual Einstein gravity (without 
cosmological constant) with fermionic and bosonic energy-momentum 
tensor as source, and from (3.10) and (3.11) the Dirac equations, and the 
Yang-Mills equations for the SU(3)x SU(2)• U(1) standard model follow 
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without  any influence of the excited Higgs field r Instead of this there exists 
only the very weak gravitational interaction. 

Of  course, the foregoing calculations are performed classically. 
However,  a quant izat ion is possible in a s~traightforward manner,  if we 
restrict ourselves with respect to the gravitational field to its linearized 
weak-field version, which is completely sufficient for the low-energy limit 
discussed above. 
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